Окружность, описанная около треугольника.Треугольник, вписанный в окружность. Теорема синусов. Окружность: описанная около многоугольника Центр и радиус описанной окружности

Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Определение

Окружность \(S\) описана около многоугольника \(P\) , если все вершины многоугольника \(P\) лежат на окружности \(S\) .

В этом случае многоугольник \(P\) называется вписанным в окружность.

Определение

Серединный перпендикуляр к отрезку – это прямая, проходящая через середину данного отрезка перпендикулярно ему.

Теорема

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Доказательство

Рассмотрим отрезок \(AB\) и серединный перпендикуляр \(a\) к нему. Докажем, что для любой точки \(X\in a\) выполнено: \(AX=BX\) .

Рассмотрим \(\triangle AXB\) : отрезок \(XO\) является медианой и высотой, следовательно, \(\triangle AXB\) – равнобедренный, следовательно, \(AX=BX\) .

Теорема

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство

Рассмотрим \(\triangle ABC\) . Проведем серединные перпендикуляры к сторонам \(AB\) и \(AC\) . Они пересекутся в точке \(O\) .


По предыдущей теореме для серединного перпендикуляра \(C_1O\) выполнено: \(AO=BO\) , а для \(B_1O\) - \(AO=CO\) . Следовательно, \(BO=CO\) . Значит, \(\triangle BOC\) – равнобедренный, следовательно, высота \(OA_1\) , проведенная к основанию \(BC\) , будет также и медианой. Значит, \(OA_1\) – серединный перпендикуляр к отрезку \(BC\) .

Таким образом, все три серединных перпендикуляра пересеклись в одной точке \(O\) .

Следствие

Если точка равноудалена от концов отрезка, то она лежит на его серединном перпендикуляре.

Теорема

Около любого треугольника можно описать единственную окружность, причём центр описанной окружности есть точка пересечения серединных перпендикуляров к сторонам треугольника.

Доказательство

Из доказанной выше теоремы следует, что \(AO=BO=CO\) . Значит, все вершины треугольника равноудалены от точки \(O\) , следовательно, они лежат на одной окружности.


Такая окружность единственна. Допустим, что около \(\triangle ABC\) можно описать еще одну окружность. Тогда ее центр должен совпасть с точкой \(O\) (т.к. это единственная точка, равноудаленная от вершин треугольника), а радиус должен быть равен расстоянию от центра до какой-то из вершин, т.е. \(OA\) . Т.к. у этих окружностей совпадают и центр, и радиус, то и эти окружности совпадают.

Теорема о площади вписанного треугольника

Если \(a, b, c\) – стороны треугольника, а \(R\) – радиус описанной около него окружности, то площадь треугольника \

Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Теорема синусов”.

Обозначим угол между сторонами \(a\) и \(c\) за \(\alpha\) . Тогда \(S_{\triangle}=\frac12 ac\cdot \sin \alpha\) .

По теореме синусов \(\dfrac b{\sin\alpha}=2R\) , откуда \(\sin \alpha=\dfrac b{2R}\) . Следовательно, \(S_{\triangle}=\dfrac{abc}{4R}\) .

Теорема

Около четырёхугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны \(180^\circ\) .

Доказательство

Необходимость.


Если около четырёхугольника \(ABCD\) можно описать окружность, то \(\buildrel\smile\over{ABC} + \buildrel\smile\over{ADC} = 360^\circ\) , откуда \(\angle ABC + \angle ADC = \frac{1}{2}\buildrel\smile\over{ABC} + \frac{1}{2}\buildrel\smile\over{ADC} = \frac{1}{2}(\buildrel\smile\over{ABC} + \buildrel\smile\over{ADC}) = 180^\circ\) . Для углов \(BCD\) и \(BAD\) аналогично.

Достаточность.


Опишем окружность около треугольника \(ABC\) . Пусть центр этой окружности – точка \(O\) . На прямой, проходящей через точки \(O\) и \(D\) отметим точку \(D"\) пересечения этой прямой и окружности. Предположим, что точки \(D\) и \(D"\) не совпали, тогда рассмотрим четырёхугольник \(CD"AD\) .

Углы \(CD"A\) и \(CDA\) дополняют угол \(ABC\) до \(180^\circ\) (\(\angle CDA\) дополняет по условию, а \(\angle CD"A\) по доказанному выше), следовательно, они равны, но тогда сумма углов четырёхугольника \(AD"CD\) больше \(360^\circ\) , чего быть не может (сумма углов это четырёхугольника есть сумма углов двух треугольников), следовательно, точки \(D\) и \(D"\) совпадают.

Замечание. На рисунке точка \(D\) лежит вне круга, ограниченного окружностью, описанной около \(\triangle ABC\) , однако, в случае, когда \(D\) лежит внутри, доказательство также остаётся верным.

Теорема

Около выпуклого четырехугольника \(ABCD\) можно описать окружность тогда и только тогда, когда \(\angle ABD=\angle ACD\) .


Доказательство

Необходимость. Если около \(ABCD\) описана окружность, то углы \(\angle ABD\) и \(\angle ACD\) – вписанные и опираются на одну дугу \(\buildrel\smile\over{AD}\) , следовательно, они равны.

Достаточность. Пусть \(\angle ABD=\angle ACD=\alpha\) . Докажем, что около \(ABCD\) можно описать окружность.


Опишем окружность около \(\triangle ABD\) . Пусть прямая \(CD\) пересекла эту окружность в точке \(C"\) . Тогда \(\angle ABD=\angle AC"D \Rightarrow \angle AC"D=\angle ACD\) .

Следовательно, \(\angle CAD=\angle C"AD=180^\circ-\angle ADC-\angle AC"D\) , то есть \(\triangle AC"D=\triangle ACD\) по общей стороне \(AD\) и двум прилежащим углам (\(\angle C"AD=\angle CAD\) , \(\angle ADC"=\angle ADC\) – общий). Значит, \(DC"=DC\) , то есть точки \(C"\) и \(C\) совпадают.

Теоремы

1. Если около параллелограмма описана окружность, то он – прямоугольник (рис. 1).

2. Если около ромба описана окружность, то он – квадрат (рис. 2).

3. Если около трапеции описана окружность, то она равнобедренная (рис. 3).


Верны и обратные утверждения: около прямоугольника, ромба и равнобедренной трапеции можно описать окружность, и притом только одну.

Доказательство

1) Пусть около параллелограмма \(ABCD\) описана окружность. Тогда суммы его противоположных углов равны \(180^\circ: \quad \angle A+\angle C=180^\circ\) . Но в параллелограмме противоположные углы равны, т.к. \(\angle A=\angle C\) . Следовательно, \(\angle A=\angle C=90^\circ\) . Значит, по определению \(ABCD\) – прямоугольник.

2) Пусть около ромба \(MNKP\) описана окружность. Аналогично предыдущему пункту (т.к. ромб является параллелограммом) доказывается, что \(MNKP\) – прямоугольник. Но все стороны этого прямоугольника равны (т.к. он ромб), значит \(MNKP\) – квадрат.

Обратное утверждение очевидно.

3) Пусть около трапеции \(QWER\) описана окружность. Тогда \(\angle Q+\angle E=180^\circ\) . Но из определения трапеции следует, что \(\angle Q+\angle W=180^\circ\) . Следовательно, \(\angle W=\angle E\) . Т.к. углы при основании \(WE\) трапеции равны, то она равнобедренная.

Обратное утверждение очевидно.