Определения признаки и свойства геометрических фигур. Геометрические фигуры и их свойства. Определение и свойство прямоугольника

Определение - это первичное описание объекта.

Примеры определений

Смежные углы - это такие углы, которые дополняют друг друга на 180 0 .

Треугольник называется равнобедренным , если две его стороны равны.

Также встречаются и такие варианты этого определения:

Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой.

Равнобедренным называется треугольник, у которого две стороны равны.

Треугольник, у которого две стороны равны, называют равнобедренным .

Ключевые слова: это, называют.

У свойства особенность в том, что объект уже дан (например, мы его видим), его не нужно описывать, а нужно указать его свойства на основе увиденного.

Например «стол», его определение - предмет мебели в виде широкой горизонтальной пластины на опорах, ножках. А, видя его, можно указать на его свойства (рис. 1): он имеет четыре ножки, прямоугольной формы и т. д. На рисунке 2 изображен также стол по определению, но свойства у него немного другие: круглая форма, цилиндрические ножки и т. д.

Рис. 1. Стол

Рис. 2. Стол

Свойства равнобедренного треугольника

Рис. 3. Равнобедренный треугольник

Мы знаем, что этот треугольник равнобедренный, исходя из рисунка 3, указываем на его свойства: в равнобедренном треугольнике углы при основании равны, высота, проведенная к основанию, совпадает с медианой и биссектрисой.

Определение и свойство прямоугольника

Рис. 4. Прямоугольник

Определение: прямоугольник - это четырехугольник, у которого все углы прямые.

А когда прямоугольник дан (рис. 4), мы можем указать свойство - у прямоугольника диагонали равны.

Признак отличается от свойства тем, что в свойстве фигура дана и мы говорим о ней, а в признаке нам не дана фигура и мы ее распознаем.

Например:

Известен признак животного - хобот. Можно предположить, что это слон.

А если известно, что животное - слон, то свойством его будет наличие хобота. Так же и в геометрии.

Свойства и признак равнобедренного треугольника

Рис. 5. Равнобедренный треугольник

Свойство: в равнобедренном треугольнике углы при основании равны. В этом случае дан треугольник (рис. 5).

Признак: если в треугольнике углы при основании равны, то этот треугольник равнобедренный. В этом случае мы не знаем, что этот треугольник равнобедренный, но, зная, что углы при основании равны, делаем вывод, что треугольник равнобедренный.

В свойстве объект уже дан и мы определяем его характеристики, в признаке мы пытаемся определить объект с помощью каких-то характеристик, а определение дает первичное понимание, что это за объект.

Свойство: у слона есть хобот.

Признак: если у животного есть хобот, то это слон.

Признак: если в треугольнике углы при основании равны, то треугольник равнобедренный.

Свойство: в равнобедренном треугольнике углы при основании равны.

Свойство: если треугольник равнобедренный, то высота, проведенная к основанию, совпадает с медианой и биссектрисой.

Признак: если в треугольнике высота совпала с медианой, то треугольник равнобедренный.

Не всегда пары признак-свойство выполняются на практике.

Рассмотрим это на геометрическом примере.

Рис. 6. Иллюстрация к примеру

Свойство: смежные углы в сумме дают 180 0

Аналогичный признак: если углы в сумме дают 180 0 , то они смежные. Это не верно! Можно доказать отложив в разных местах углы как на рисунке 7. Эти углы не будут смежными.

Рис. 7. Иллюстрация к примеру

Следует помнить, что свойства и признаки не всегда идут парами.

Рис. 8. Иллюстрация к примеру

Вопрос: почему в равнобедренном треугольнике две стороны равны между собой (рис. 8)?

Ответ: по определению.

Вопрос: почему в равнобедренном треугольнике углы при основании равны?

Ответ: по свойству. Потому что мы знаем, что это за треугольник.

Вопрос: почему если в треугольнике углы при основании равны, то этот треугольник равнобедренный?

Ответ: по признаку. В данном случае не дано, что треугольник равнобедренный.

Сегодня на уроке мы разобрали разницу между определениями, признаками и свойствами. Вспомним. Определение - это первичное понимание того, что за объект перед нами. Свойство - это когда дан объект и мы его изучаем. Признак состоит в том, что объект не дан и мы пытаемся его выделить из общей массы.

Список литературы

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. - М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. - 5-е изд. - М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.
  1. Slovo.ws ().
  2. Festival.1september.ru ().

Домашнее задание

  1. Определите четырехугольник по признаку. Его диагонали пересекаются под прямым углом и делятся точкой пересечения пополам.
  2. Какие признаки параллелограмма указывают на то, что он является прямоугольником?
  3. Изучите определения, свойства и признаки таких геометрически фигур как равнобокая трапеция, прямоугольник, ромб, параллелограмм.

«Геометрические

фигуры

и их свойства»

Электронный справочник

Составила: Касьянова Т.В.

Учитель математики и информатики

МОУ «СОШ №3 г. Зеленокумска»


Узнай меня

Простейшие геометрические фигуры


Прямая

  • Определение

, а

  • Обозначение:

АВ или ВА

а


Прямая

  • Точки, принадлежащие прямой.
  • Точки, не принадлежащие прямой.

Прямая

  • Прямые, пересекающие прямую а

b

k

а

c

  • Прямые, не пересекающие прямую а

Отрезок

  • Определение
  • Обозначение:

CD или DC


Отрезок

  • Точки, принадлежащие отрезку АВ
  • Точки, не принадлежащие отрезку АВ

m

n

  • Прямые, пересекающие отрезок АВ
  • Прямые, не пересекающие отрезок АВ

  • Определение
  • Обозначение:

  • Точки, принадлежащие лучу KL
  • Точки, не принадлежащие лучу KL
  • Лучи, пересекающие луч KL
  • Лучи, не пересекающие луч KL

Координатный луч

  • Определение
  • Координаты точек

Треугольник

Треугольник - простейшая плоская фигура. Три вершины и три стороны. Изучение треугольника породило науку – тригонометрию. Эта наука возникла из практических потребностей при измерении земельных участков, составлении карт на местности, конструировании машин и механизмов.


Первое упоминание о треугольнике и его свойствах мы находим в египетских папирусах,

которым более 4000лет,а через 2000 лет - в древней Греции.


Виды треугольников по углам

Тупоугольный

треугольник

Остроугольный

треугольник

Прямоугольный

треугольник


Виды треугольников по сторонам

Разносторонний треугольник


Отрезки треугольника

  • Медиана треугольника
  • Высота треугольника
  • Биссектриса треугольника
  • Проверочные задания

Треугольники

  • Признаки равенства треугольников
  • Признаки подобия треугольников
  • Решение задач
  • Признаки равенства прямоугольных треугольников

Прямоугольные треугольники

Треугольник, у которого есть прямой угол, называется прямоугольным.

Каждый из таких треугольников называют прямоугольным.


Тупоугольные треугольники

Треугольник, у которого есть тупой угол, называется тупоугольным.

Это – тупоугольные треугольники.


Остроугольные треугольники

Треугольник, у которого все углы острые, называется остроугольным.

Это – остроугольные треугольники


4. Равнобедренные треугольники

Треугольник, у которого есть равные стороны, называется равнобедренным.

Каждый из таких треугольников - равнобедренный.


Равносторонние треугольники

Треугольник, у которого все стороны равны, называется равносторонним

Это равносторонние треугольники


Разносторонние треугольники

Треугольник, у которого все стороны имеют разную длину, называется разносторонним

Это разносторонние треугольники


Медиана треугольника

  • Отрезок соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
  • Любой треугольник имеет

три медианы.

  • В треугольнике медианы пересекаются в одной точке.

Высота треугольника

  • Перпендикуляр проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.
  • Любой треугольник имеет три высоты.
  • В треугольнике высоты пересекаются в одной точке.

Биссектриса треугольника

  • Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника.
  • Любой треугольник имеет три биссектрисы.
  • В треугольнике биссектрисы пересекаются в одной точке.

На каком рисунке изображена медиана треугольника?





На каком рисунке изображена высота?





На каком рисунке изображена биссектриса?





свойства

равнобедренного

треугольни ка


в 1,5 раза больше ER

на 3см меньше МК

Найдите равнобедренные треугольники


Сформулируйте признак равенства треугольников, который изображен на рисунке


Первый признак равенства треугольников

и углу между ними)

(по двум сторонам

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.

назад


Второй признак равенства треугольников

и двум прилежащим к ней углам)

(по стороне

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

назад


Третий признак равенства треугольников

(по трем сторонам)

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

назад


Такого признака равенства треугольников не существует

Это подобие

назад


Работа над ошибками

Верно ли доказано равенство треугольников?


Задачи с практическим содержанием

Задача

Лежащий на полу ковер прямоугольной формы, сложили по диагонали.

Выполнив измерения,

указанные на рисунке.

Саша быстро восстановил

размеры ковра. Как он это сделал?

AF = 4м, EF = 3 м


Задача

Докажите равенство

∆ AFE и ∆ CDE.


Указания к решению задач с практическим содержанием

Задача

Докажите равенство

∆ AFE и ∆ CDE.


Самостоятельная работа

Найдите на рисунках равные треугольники и докажите их равенство


Прямоугольный треугольник

катет

гипотенуза

катет


Прямоугольный треугольник

1 признак. По двум катетам


Прямоугольный треугольник

Признаки равенства прямоугольных треугольников

2 признак. По катету и гипотенузе


Прямоугольный треугольник

Признаки равенства прямоугольных треугольников

3 признак. По катету и прилежащему острому углу


Прямоугольный треугольник

Признаки равенства прямоугольных треугольников

4 признак. По гипотенузе и острому углу


Сформулируйте признак подобия треугольников, который изображен на рисунке


Первый признак подобия треугольников

(по двум углам)

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

назад


Второй признак подобия треугольников

(по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами равны, то такие треугольники подобны.

назад


Третий признак подобия треугольников

(по трем сторонам)

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

назад


Четырехугольник

Четырехугольник – фигура, состоящая из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки – пересекаться.


Выпуклость

Четырехугольники бывают выпуклыми и невыпуклыми.

Четырехугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Выпуклый

Невыпуклый


Виды выпуклых четырехугольников

Трапеция

Параллелограмм

Ромб

Прямоугольник

Квадрат


Площади плоских фигур:

  • Определение площади
  • Свойства площадей
  • Формулы площадей четырёхугольников
  • Закрепление материала

Параллелограмм

Определение:

Параллелограмм – четырехугольник, у которого противолежащие стороны параллельны.

Свойства параллелограмма


Свойства параллелограмма

1)Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

2)У параллелограмма противолежащие стороны равны, противолежащие углы равны.

Признаки параллелограмма:

1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм.

2) Если в четырехугольнике две стороны попарно равны, то этот четырехугольник – параллелограмм.


Прямоугольник

Определение:

Прямоугольник – это параллелограмм, у которого все углы прямые.

Свойства

прямоугольника


Свойства прямоугольника:

  • Свойства параллелограмма.
  • Диагонали прямоугольника равны.

Признак прямоугольника:

Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.


Ромб

Определение:

Ромб – это параллелограмм, у которого все стороны равны.

Свойства ромба


Свойства ромба:

  • Диагонали ромба пересекаются под прямым углом.
  • Диагонали ромба являются биссектрисами его углов.

Квадрат

Определение:

1)Квадрат – это прямоугольник, у которого все стороны равны.

2)Квадрат – это ромб, у которого все углы прямые.

  • Свойства квадрата

Свойства квадрата

  • У квадрата все углы прямые.

2) Диагонали квадрата равны, пересекаются под прямым углом и являются биссектрисами его углов.


Боковая сторона

Боковая сторона

Трапеция

Основание

Определение:

Трапеция - это четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Основание


Виды трапеций

Произвольная

Равнобедренная

Прямоугольная


Понятие площади

  • Что принимают за единицу измерения площади?
  • В каких единицах измеряется площадь?
  • Чем выражается площадь многоугольника, что показывает это число?

Свойства площадей

  • Равные многоугольники имеют равные площади
  • Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников
  • Площадь квадрата равна квадрату его стороны

1 свойство

то S(F1)=S(F2)


2 свойство

S(F)=S(F1)+S(F2)+S(F3)


3 свойство

S квадрата = a 2


Площади геометрических фигур

S = a x h


Ко всем четырехугольникам подберите формулы для вычисления их площади

Формулы для вычисления площади

Четырехугольники

  • Квадрат
  • Прямоугольник
  • Параллелограмм
  • Трапеция
  • Треугольник

Планиметрия – это раздел геометрии, в котором изучаются фигуры на плоскости.

Фигуры, изучаемые планиметрией:

3. Параллелограмм (частные случаи: квадрат, прямоугольник, ромб)

4. Трапеция

5. Окружность

6. Треугольник

7. Многоугольник

1) Точка:

В геометрии, топологии и близких разделах математики точкой называют абстрактный объект в пространстве, не имеющий ни объёма, ни площади, ни длины, ни каких-либо других аналогичных характеристик больших размерностей. Таким образом, точкой называют нульмерный объект. Точка является одним из фундаментальных понятий в математике.

Точка в Евклидовой геометрии:

Точка - это одно из фундаментальных понятий геометрии, поэтому "точка" не имеет определения. Евклид определил точку как то, что нельзя разделить.

Прямая - одно из основных понятий геометрии.

Геометрическая прямая (прямая линия) - незамкнутый с двух сторон, протяженный не искривляющийся геометрический объект, поперечное сечение которого стремится к нулю, а продольная проекция на плоскость даёт точку.

При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.

Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками.

3) Параллелограмм:

Параллелограмм- это четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Частные случаи:

Квадрат - правильный четырёхугольник или ромб, у которого все углы прямые, или параллелограмм, у которого все стороны и углы равны.

Квадрат может быть определён как : прямоугольник, у которого две смежные стороны равны;

ромб, у которого все углы прямые (любой квадрат является ромбом, но не любой ромб является квадратом).

Прямоугольник - это параллелограмм, у которого все углы прямые (равны 90 градусам).

Ромб - это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом.

4) Трапеция:

Трапеция - четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.

1. Трапеция, у которой боковые стороны не равны,

называется разносторонней .

2. Трапеция, у которой боковые стороны равны, называется равнобокой.

3. Трапеция, у которой одна боковая сторона составляет прямой угол с основаниями, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией трапеции (MN). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Трапецию можно назвать усеченным треугольником, поэтому и названия трапеций сходны с названиями треугольников (треугольники бывают разносторонние, равнобедренные, прямоугольные).

5) Окружность:

Окружность - геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.

6) Треугольник:

Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, и тремя отрезками, попарно соединяющими эти точки.

7) Многоугольник:

Многоугольник - это геометрическая фигура, определяется как замкнутая ломаная. Существуют три различных варианта определения:

Плоские замкнутые ломаные;

Плоские замкнутые ломаные без самопересечений;

Части плоскости, ограниченные ломаными.

Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника.

Основные свойства прямой и точки:

1. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

2. Из трех точек на прямой одна и только одна лежит между двумя другими.

3. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

6. На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

7. От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180О, и только один.

8. Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

Свойства треугольника:

Соотношения между сторонами и углами треугольника:

1) Против большей стороны лежит больший угол.

2) Против большего угла лежит большая сторона.

3) Против равных сторон лежат равные углы, и, обратно, против равных углов лежат равные стороны.

Соотношение между внутренними и внешними углами треугольника:

1) Сумма двух любых внутренних углов треугольника равна внешнему углу треугольника, смежного с третьим углом.

2) Стороны и углы треугольника связаны между собой также соотношениями, называемыми теоремой синусов и теоремой косинусов.

Треугольник называется тупоугольным, прямоугольным или остроугольным , если его наибольший внутренний угол соответственно больше, равен или меньше 90∘.

Средней линией треугольника называется отрезок, соединяющий середины двух сторон треугольника.

Свойства средней линии треугольника:

1) Прямая, содержащая среднюю линию треугольника, параллельна прямой, содержащей третью сторону треугольника.

2) Средняя линия треугольника равна половине третьей стороны.

3) Средняя линия треугольника отсекает от треугольника подобный треугольник.

Свойства прямоугольника:

1) противолежащие стороны равны и параллельны друг другу;

2) диагонали равны и в точке пересечения делятся пополам;

3) сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон;

4) прямогугольниками одного размера можно полностью замостить плоскость;

5)прямоугольник можно двумя способами разделить на два равных между собой прямоугольника;

6) прямоугольник можно разделить на два равных между собой прямогульных треугольника;

7)вокруг прямоугольника можно описать окружность, диаметр которой равен диагонали прямоугольника;

8) в прямогульник (кроме квадрата) нельзя вписать окружность так, чтобы она касалась всех его сторон.

Свойства параллелограмма:

1) Середина диагонали параллелограмма является его центром симметрии.

2) Противоположные стороны параллелограмма равны.

3) Противоположные углы параллелограмма равны.

4) Каждая диагональ параллелограмма делит его на два равных треугольника.

5) Диагонали параллелограмма делятся точкой пересечения пополам.

6) Сумма квадратов диагоналей параллелограмма (d1 и d2) равна сумме квадратов всех его сторон: d21+d22=2(a2+b2)

Свойства квадрата:

1) Все углы квадрата - прямые, все стороны квадрата - равны.

2) Диагонали квадрата равны и пересекаются под прямым углом.

3) Диагонали квадрата делят его углы пополам.

Свойства ромба:

1. Диагональ ромба делит его на два равных треугольника.

2. Диагонали ромба в точке их пересечения делятся пополам.

3. Противоположные стороны ромба равны между собой, равны и противоположные углы его.

Кроме того, ромб обладает ещё следующими свойствами:

а) диагонали ромба взаимно перпендикулярны;

б) диагональ ромба делит угол его пополам.

Свойства окружности:

1) Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая).

2) Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

3) Точка касания двух окружностей лежит на линии, соединяющей их центры.

Свойства многоугольника:

1) Сумма внутренних углов плоского выпуклого n-угольника равна.

2)Число диагоналей всякого n-угольника равно.

3).Произведение сторон многоугольника на синус угла между ними равна площади многоуголиника.

Багдасаева Виктория Владимировна

Цель работы: систематизация и обобщение материала. Некоторые интересные факты и забытые формулы.

Скачать:

Подписи к слайдам:

Слайд 1
Геометрические фигуры и их свойства Работу выполнила Багдасаева Виктория Ученица 10 Б класса

Слайд 2
Цель: систематизация знаний, обобщение материала.

Слайд 3
Геометрия – это наука о свойствах геометрических фигур. Слово «геометрия» греческое, в переводе на русский язык означает «землемерие». Такое название этой науке было дано потому, что в древнее время главной целью геометрии было измерение расстояний и площадей на земной поверхности. Фигура – это произвольное множество точек на плоскости. Точка, прямая, отрезок, луч, треугольник, круг, квадрат и так далее – всё это примеры геометрических фигур. Геометрия

Слайд 4
Точка В геометрии, топологии и близких разделах математики точкой называют абстрактный объект в пространстве, не имеющий ни объёма, ни площади, ни длины, ни каких-либо других аналогичных характеристик больших размерностей. Таким образом, точкой называют нульмерный объект. Точка является одним из фундаментальных понятий в математике. Точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.

Слайд 5
Прямая Прямая - одно из основных понятий геометрии. Геометрическая прямая (прямая линия) - незамкнутый с двух сторон, протяженный не искривляющийся геометрический объект, поперечное сечение которого стремится к нулю, а продольная проекция на плоскость даёт точку. Свойства: Через две точки можно провести единственную прямую. Две прямые могут пересекаться только в одной точке. Через одну точку можно провести бесконечное множество прямых.

Слайд 6
Отрезок Часть прямой линии, ограниченная с двух сторон точками, называется отрезком прямой, или отрезком. Свойства измерения отрезка: Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равняется сумме длин частей, на которые он разбивается любой своей внутренней точкой. Расстоянием между двумя точками A и B называется длина отрезка AB . При этом, если точки A и B совпадают, будем считать, что расстояние между ними равно нулю. Два отрезка называются равными, если равны их длины.

Слайд 7
Ломаная линия Ломаная линия - это несколько отрезков, соединенных между собой так, что конец первого отрезка является началом второго отрезка, а конец второго отрезка - началом третьего отрезка и т. д., при этом соседние (имеющие одну общую точку) отрезки расположены не на одной прямой. Если конец последнего отрезка не совпадает с началом первого, то такая ломаная линия называется незамкнутой.

Слайд 8
Л уч Луч (полупрямая) – это часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от этой точки и включая эту точку. Эта точка называется начальной точкой полупрямой (луча). Обозначается луч двумя точками: начальной точкой и какой-либо точкой на этом луче. Из одной точки можно провести бесчисленное множество лучей. На луче можно отложить еще точку, кроме вершины луча, которая будет принадлежать отрезку, лежащему на этом луче.

Слайд 9
Угол Угол – часть плоскости, ограниченная двумя лучами, исходящими из одной точки. Угол – это геометрическая фигура, имеющая вершину, стороны и свою градусную меру. Углы измеряются в градусах и радианах. Виды углов Если у угла обе стороны лежат на одной прямой, то такой угол называется развернутым углом. Острый угол - градусная мера от 0 до 90 градусов Прямой угол - градусная мера 90 градусов Тупой угол - градусная мера больше 90 градусов

Слайд 10
Параллелограмм Параллелограмм - это четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб. Свойства параллелограмма: 1. В параллелограмме противоположные стороны и углы равны. 2. В параллелограмме сумма углов, прилегающих к одной стороне, равна 180 °. 3. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. 4. Диагонали параллелограмма делят его на две равные треугольники. Признаки параллелограмма: 1. Если диагонали четырехугольника пересекаются и в точке пересечения делятся пополам, то этот четырехугольник параллелограмм. 2. Если в четырехугольнике две противоположные стороны параллельны и равны, то этот четырехугольник параллелограмм. 3. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник параллелограмм. 4. Если в четырехугольнике противоположные углы попарно равны, то этот четырехугольник параллелограмм.

Слайд 11
Основные формулы

Слайд 12
Прямоугольник Параллелограмм, у которого все углы прямые, называется прямоугольником. Свойства прямоугольника: 1. Противоположные стороны прямоугольника равны. 2. Все углы прямоугольника прямые. 3. Диагонали прямоугольника равны. 4. Диагонали прямоугольника пересекаются и точкой пересечения делятся пополам. 5. Диагонали прямоугольника делят его на два равных треугольника. 6. В прямоугольника сумма углов, прилегающих к одной стороне, равна 180 °. Признаки прямоугольника: 1. Если в параллелограмме все углы равны, то этот параллелограмм является прямоугольником. 2. Если в параллелограмме один угол прямой, то этот параллелограмм является прямоугольником. 3. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником. 4. Если в четырехугольнике три угла прямые, то этот четырехугольник является прямоугольником. 5. Если в четырехугольнике все углы равны, то этот четырехугольник является прямоугольником

Слайд 13
Формулы Формулы определения длин сторон прямоугольника: 1. Формула стороны прямоугольника через диагональ и другую сторону: 2 . Формула стороны прямоугольника через площадь и другую сторону: 3. Формула стороны прямоугольника через периметр и другую сторону: 4. Формула стороны прямоугольника через диаметр и угол α: a= dsin α b= dcos α

Слайд 14
Квадрат Квадра́т - правильный четырёхугольник, у которого все углы и стороны равны. С войства квадрата: Все углы квадрата - прямые, все стороны квадрата - равны. Диагонали квадрата равны и пересекаются под прямым углом. Диагонали квадрата делят его углы пополам. Площадь квадрата равна квадрату его стороны

Слайд 15
Формулы

Слайд 16
Единичный квадрат Единичный квадрат - квадрат в прямоугольных координатах, левый нижний угол которого находится в начале координат и имеет длины сторон по единице. Его вершины имеют координаты (0,0), (1,0), (1,1) и (0,1). Площадь единичного квадрата равна 1, периметр - 4, диагональ - квадратный к орень из двух.

Слайд 17
Ромб Ромб – это четырехугольник, у которого все стороны равны, а диагонали в точке пересечения делятся под прямым углом. Свойства: 1. Противолежащие стороны попарно параллельны. 2. Все стороны равны. 3. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. 4. Диагонали ромба являются биссектрисами его углов 5. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 6. Площадь ромба равна половине произведения его диагоналей. 7. Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.

Слайд 18
Формулы

Слайд 19
Единичная окружность Единичная окружность - окружность радиуса 1 на евклидовой плоскости.

Слайд 20
Двугранный угол Двугранный угол - пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями. Полуплоскостями называются гранями двугранного угла, а их общая прямая - ребром. Линейный угол: Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней. Линейный угол между этими двумя лучами и будет равен по величине двугранному углу. У всякого многогранника, правильного или неправильного, выпуклого или вогнутого, есть двугранный угол на каждом ребре. Теоремы, используемые для решения задач: Если одна из двух плоскостей проходит через прямую перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. Плоскость, перпендикулярная прямой, по которой пересекаются две плоскости, перпендикулярна каждой из этих плоскостей. Если две плоскости перпендикулярны и в одной из них проведена прямая перпендикулярно линии пересечения плоскостей, то эта прямая перпендикулярна второй плоскости.

Слайд 21
Треугольник Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.

Слайд 22
Формулы

Слайд 23
Равнобедренный треугольник Равнобедренный треугольник - это треугольник, в котором длины двух его сторон равны между собой. Свойства равнобедренного треугольника: 1. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. 2. Биссектрисы, медианы и высоты, проведённые из углов, противолежащих равным сторонам треугольника, равны между собой. 3. Биссектриса, медиана и высота, проведенные к основанию, совпадают между собой. 4. Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане (они совпадают) проведенных к основанию. 5. Углы, противолежащие равным сторонам равнобедренного треугольника, всегда острые. Признаки равнобедренного треугольника: 1. Два угла треугольника равны 2. Высота совпадает с медианой 3. Высота совпадает с биссектрисой 4. Биссектриса совпадает с медианой 5. Две высоты равны 6. Две медианы равны 7. Две биссектрисы равны

Слайд 24
Равносторонний треугольник Правильный (или равносторонний) треугольник - это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, а все углы также равны и составляют 60 °. Свойства: В равностороннем треугольнике все углы равны между собой и равны 60 ∘. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной.

Слайд 25
Формулы

Слайд 26
Прямоугольный треугольник Прямоуго́льный треуго́льник - это треугольник, в котором один угол прямой (то есть составляет 90 градусов) Свойства:

Слайд 27

Слайд 28
Трапеция Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна). Параллельные стороны трапеции называются основаниями. Другие две - боковые стороны. Если боковые стороны равны, трапеция называется равнобедренной. Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Слайд 29
Свойства:

Слайд 30

Слайд 31

Слайд 32

Слайд 33
Свойства и признаки равнобедренной трапеции

Слайд 34
Прямоугольная трапеция Прямоугольная трапеция - это трапеция, у которой хотя бы один из углов прямой Свойства: У прямоугольной трапеции два угла обязательно прямые Оба прямых угла прямоугольной трапеции обязательно принадлежат смежным вершинам Оба прямых угла в прямоугольной трапеции обязательно прилежат к одной и той же боковой стороне Диагонали прямоугольной трапеции образуют с одной из боковых сторон прямоугольный треугольник Длина боковой стороны трапеции, перпендикулярной основаниям равна ее высоте У прямоугольной трапеции основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона - наклонная к основаниям У прямоугольной трапеции два угла прямые, а два других – острый и тупой

Слайд 35
Основные формулы: a и b - основания трапеции с - боковая сторона прямоугольной трапеции, перпендикулярная основаниям d - боковая сторона трапеции, не являющаяся перпендикулярной основаниям - острый угол при большем основании трапеции m - средняя линия трапеции

Слайд 36
Окружность Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, - радиусом окружности. Часть плоскости, ограниченная окружностью называется кругом. Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Слайд 37
Касательная Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Свойства касательной: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Слайд 38
Х орда Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром. Свойства хорд: Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде. Дуги, заключенные между параллельными хордами, равны. Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM MB = CM MD.

Слайд 39
Свойства окружности: Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая). Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну. Точка касания двух окружностей лежит на линии, соединяющей их центры. Углы в окружности: Центральным углом в окружности называется плоский угол с вершиной в ее центре. Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Свойства углов, связанных с окружностью: Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны. Вписанный угол, опирающийся на диаметр, равен 90 °. Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Слайд 40
Длина окружности C радиуса R вычисляется по формуле: Площадь S круга радиуса R вычисляется по формуле: Длина дуги окружности L радиуса R с центральным углом, измеренным в радианах, вычисляется по формуле: Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле: Формулы:

Слайд 41
Круг Круг – это часть плоскости, ограниченная окружностью. Точка О также называется центром круга Свойства: При вращении плоскости относительно центра круг переходит сам в себя. Круг является выпуклой фигурой. Площадь круга радиуса R вычисляется по формуле: , где ≈3.14159…. Площадь сектора равна, где α - угловая величина дуги в радианах, R - радиус. Периметр круга (длина окружности, ограничивающей круг): . (Изопериметрическое неравенство) Круг является фигурой, имеющей наибольшую площадь при заданном периметре. Или, что то же самое, обладающей наименьшим периметром при заданной площади.

Слайд 42
Взаимное расположение прямых и плоскостей в пространстве

Слайд 43

Слайд 44
Конус Конусом называется тело, которое состоит из круга (основания конуса), точки, не лежащей в плоскости этого круга (вершины конуса), и всех отрезков, соединяющих вершину конуса с точками основания (образующими конуса). Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом.

Слайд 45
Сечения конуса Если плоскость сечения проходит через вершину конуса, то сечение представляет собой равнобедренный треугольник, боковые стороны которого являются образующими конуса. Сечение конуса, проходящее через ось (высоту) называется осевым. Если плоскость параллельная плоскости основания конуса, то она пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Слайд 46
Пирамида Пирамида – многогранник, основание которого - многоугольник, а остальные грани - треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные, четырёхугольные и т. д. Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания. Основание - многоугольник, которому не принадлежит вершина пирамиды. Апофема - высота боковой грани правильной пирамиды, проведенная из ее вершины. Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания.

Слайд 47
Свойства пирамиды: 1) Если все боковые ребра равны, то – около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр – боковые ребра образуют с плоскостью основания равные углы 2) Если все грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Слайд 48
Виды пирамид Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания. Для правильной пирамиды справедливо: – боковые ребра правильной пирамиды равны; – в правильной пирамиде все боковые грани - равные равнобедренные треугольники; – в любую правильную пирамиду можно вписать сферу; – около любой правильной пирамиды можно описать сферу; – площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Слайд 49
Виды пирамид Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды. Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Слайд 50
Свойства тетраэдра: Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра. Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части. Основные формулы: а – сторона тетраэдра

Слайд 51
Призма Призмой (n-угольной призмой) называется многогранник, составленный из двух равных многоугольников A1A2 ... An и B1B2 ... Bn , лежащих в параллельных плоскостях, и n параллелограммов A1A2B2B1,...,A1AnBnB1 . Боковые грани – все грани, кроме оснований (являются параллелограммами). Боковые ребра – общие стороны боковых граней (параллельны между собой и равны). Диагональ – отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. Высота призмы – перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания. Диагональная плоскость – плоскость, проходящая через боковое ребро призмы и диагональ основания. Диагональное сечение –пересечение призмы и диагональной плоскости. Перпендикулярное сечение – пересечение призмы и плоскости, перпендикулярной ее боковому ребру.

Слайд 52
Свойства призмы: Основания призмы – это равные многоугольники. Боковые грани призмы имеют вид параллелограмма. Боковые ребра призмы параллельные и равны. Углы перпендикулярного сечения - это линейные углы двугранных углов при соответствующих боковых рёбрах. Перпендикулярное сечение перпендикулярно всем боковым граням и всем боковым рёбрам призмы. Основные формулы: Площадь полной поверхности призмы = сумме площади её боковой поверхности и двойной площади основания. S пп = S бп+2 S ос Площадь боковой поверхности произвольной призмы: S=P*l , где P - периметр перпендикулярного сечения, l - длина бокового ребра. Площадь боковой поверхности прямой призмы: S=P*h , где P - периметр основания призмы, h - высота призмы. Объем призмы равен произведению площади основания призмы, на высоту. V = Soh , где V - объем призмы, So - площадь основания призмы, h - высота призмы.

Слайд 53
Правильная призма Правильная призма – это прямая призма, основанием которой является правильный многоугольник (равносторонний треугольник, квадрат, правильный шестиугольник и т.п.).

Слайд 54
Правильная четырехугольная призма Свойства: Основания правильной четырехугольной призмы – это 2 одинаковых квадрата; Верхнее и нижнее основания параллельны; Боковые грани имеют вид прямоугольников; Все боковые грани равны между собой; Боковые грани перпендикулярны основаниям; Боковые ребра параллельны между собой и равны; Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям; Углы перпендикулярного сечения - прямые; Диагональное сечение правильной четырехугольной призмы является прямоугольником; Перпендикулярное (ортогональное сечение) параллельно основаниям. Основные формулы:

Слайд 55
Цилиндр Цилиндром называется тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги, указанные в определении, называются основаниями цилиндра. Отрезки, соединяющие соответствующие точки окружностей кругов, называются образующими цилиндра. Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. Высотой цилиндра называется расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Свойства цилиндра: Основания цилиндра равны Основания лежат в параллельных плоскостях Образующие цилиндра параллельны и равны Основные формулы: S бп =2 π rh S пп = 2πrh+2πr2=2πr(h+r) V= π r 2 h

Слайд 56
Сечения цилиндра Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Сечение цилиндра плоскостью, параллельной оси цилиндра, - прямоугольник. Сечение цилиндра плоскостью, перпендикулярной оси цилиндра, - круг.

Слайд 57
Шар Шар – геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние называется радиусом шара. Сфера является поверхностью (границей) шара с центром и радиусом, как у шара.

Слайд 58
Основные формулы Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Круг ABC – основание шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, – высота шарового сегмента. Точка M – вершина шарового сегмента. Площадь поверхности шарового сегмента можно вычислить по формуле: S = 2π Rh , где R – радиус большого круга, h – высота шарового сегмента. Объём шарового сегмента можно найти по формуле: V = πh2(R – 1/3h), где R – радиус большого круга, h – высота шарового сегмента. Шаровой сектор – это часть шара, ограниченная кривой поверхностью сферического сегмента) и конической поверхностью, основанием которой служит основание сегмента, а вершиной – центр шара O . Объем шарового сектора находится по формуле: V = 2/3πR2 H .

Слайд 59
Вектор Вектором называется направленный отрезок, где точка A - начало, точка B - конец вектора. Нулевым вектором называется вектор, у которого начало совпадает с концом. Векторы и называются одинаково направленными или сонаправленными, если лучи AB и CD одинаково направлены. Если лучи AB и CD противоположно направлены, векторы и называются противоположно направленными. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.

Слайд 60
Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютную величину вектора обозначают Два вектора называются равными, если они одинаково направлены и равны по абсолютной величине. Два вектора с равными модулями, лежащие на параллельных прямых, но противоположно направленные, называются противоположными. Вектор, противоположный вектору, обозначается как.

Чукур Людмила Васильевна
Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур

«ГЕОМЕТРИЧЕСКАЯ ФИГУРА .

ОСОБЕННОСТИ ВОСПРИЯТИЯ ДЕТЬМИ

Подготовила : ст. воспитатель Чукур Л . В.

1. Понятие «геометрическая фигура » . Особенности развития представлений о форме предметов у детей дошкольного возраста

Одним из свойств окружающих предметов является их форма . Форма предметов получила обобщенное отражение в геометрических фигурах .

Фигура - латинское слово , означает «образ» , «вид» , «начертание» ; это часть плоскости, ограниченная замкнутой линией, или часть пространства, ограниченная замкнутой поверхностью. Этот термин вошел в общее употребление в XII в. До этого чаще употреблялось другое латинское слово - «форма » , также означающее «наружный вид» , «внешнее очертание предмета » .

Наблюдая за предметами окружающего мира , люди заметили, что есть некоторое общее свойство, позволяющее объединить предметы в одну группу . Это свойство было названо геометрической фигурой . Геометрическая фигура – это эталон для определения формы предмета , всякое непустое множество точек; обобщенное абстрактное понятие.

Само определение понятия геометрической фигуры дали древние греки . Они определили , что геометрической фигурой является внутренняя область, ограниченная замкнутой линией на плоскости. Активно это понятие применял в своей работе Евклид. Древние греки классифицировали все геометрические фигуры и дали им названия .

Упоминание о первых геометрических фигурах встречается и у древних египтян и древних шумеров. Учеными-археологами был найден папирусный свиток с геометрическими задачами , в которых упоминались геометрические фигуры . И каждая из них называлась каким-то определенным словом .

Таким образом, представление о геометрии и изучаемых этой наукой фигурах имели люди с давних времен, но название, «геометрическая фигура » и названия всем геометрическим фигурам дали древнегреческие ученые.

В наше время знакомство с геометрическими фигурами начинается с раннего детства и продолжается на всём пути обучения. Дошкольники, познавая окружающий мир, сталкиваются с разнообразием форм предметов , учатся называть и различать их, а затем знакомятся и со свойствами геометрических фигур .

Форма – это внешнее очертание предмета . Множество форм бесконечно .

Представления о форме предметов возникают у детей достаточно рано. В исследованиях Л. А. Венгера выясняется, возможно ли различение формы предметов детьми , у которых еще не сформировался акт хватания . В качестве индикатора он использовал ориентировочную реакцию ребенка в возрасте 3-4 месяцев.

Детям предъявлялись два объемных тела одинакового стального цвета и размера (призма и шар, одно из них подвешивалась над манежем, чтобы угасить ориентировочную реакцию; затем снова подвешивалась пара фигур . На одну из них (призма) реакция угашена, другая (шар) - новая. Малыши обращали взор на новую фигуру и фиксировали ее взглядом в течение более длительного времени, чем старую.

Л. А. Венгер заметил также, что что на геометрической фигуре с изменением пространственной ориентации возникает такое же зрительное сосредоточение, как и на новой геометрической фигуре .

Исследования М. Денисовой и Н. Фигурина показали , что грудной ребенок по форме на ощупь определяет бутылочку , соску, материнскую грудь. Зрительно дети начинают различать форму предметов с 5 месяцев . При этом индикатором различения являются движения рук, корпуса по направлению к экспериментальному объекту и схватывание его (при пищевом подкреплении) .

В других исследованиях выявлено, что, если предметы отличаются цветом , то ребенок 3-х лет выделяет их форму только в том случае , если предмет знаком ребенку из практического опыта (опыт манипуляций, действий) .

Это доказывает и тот факт, что ребенок одинаково узнает прямые и перевернутые изображения (может рассматривать и понимать знакомые картинки, держа книжку «вверх ногами» , предметы , окрашенные в несвойственные цвета (черное яблоко, но квадрат, повернутый на угол, т. е. в виде ромба, не узнает, так как исчезает непосредственное сходство формы предмета , которого нет в опыте.

2. Особенности восприятия детьми дошкольного возраста формы предметов и геометрических фигур

Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие . Восприятие помогает отличить один предмет от другого , выделить какие-то предметы или явления из других похожих на него.

Первичное овладение формой предмета Форма предмета , как таковая, не предмета предшествовать практическим действиям. Действия детей с предметами на разных этапах различны.

Исследования психолога С. Н. Шабалина показывают, что геометрическая фигура воспринимается дошкольниками своеобразно. Если взрослый воспринимает ведро или стакан как предметы , имеющие цилиндрическую форму , то в его восприятие включается знание геометрических форм . У дошкольника происходит обратное явление.

В 3-4 года дети опредмечивают геометрические фигуры , так как они в их опыте представлена нераздельно с предметами , не абстрагированы. Геометрическая фигура воспринимается детьми как картинка , как некоторый предмет : квадрат - это платочек, кармашек; треугольник - крыша, круг - колесо, мячик, два круга рядом - очки, несколько кругов рядом - бусы и т. п.

В 4 года опредмечивание геометрической фигуры возникает только при столкновении ребенка с незнакомой фигурой : цилиндр - это ведро, стаканчик.

В 4-5 лет ребенок начинает сравнивать геометрическую фигуру с предметом : про квадрат говорит «это как платочек» .

В результате организованного обучения дети начинают выделять в окружающих предметах знакомую геометрическую фигуру , сравнивать предмет с фигурой (стаканчик как цилиндр, крыша как треугольник, учится давать правильное название геометрической фигуры и формы предмета , в их речи появляются слова «квадрат» , «круг» , «квадратный» , «круглый» и т. п.

Проблему знакомства детей с геометрическими фигурами и их свойствами следует рассматривать в двух аспектах :

В плане сенсорного восприятия форм геометрических фигур и использования их как эталонов в познании форм окружающих предметов ;

В смысле познания особенностей их структуры , свойств, основных свя-зей и закономерностей в их построении, т. е. собственно геометри-ческого материала .

Контур предмета это общее начало , которое является исходным как для зрительного, так и для осязательного восприятия . Однако вопрос о роли контура в восприятии формы и формировании целостного образа требует еще дальнейшей разработки.

Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета , как таковая, не воспринимается отдельно от предмета , она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям.

Действия детей с предметами на разных этапах различны. Малыши стремятся, прежде всего, захватить предмет руками и начать манипулировать им. Дети 2,5 лет, прежде чем действовать, довольно подробно зрительно и осязательно - двигательно знакомятся с предметами . Значение практических действий остается главным. Отсюда следует вывод о необходимости руководить развитием перцептивных действий двухлетних детей. В зависимости от педагогического руководства характер перцептивных действий детей постепенно достигает познавательного уровня. Ребенка начинают интересовать различные признаки предмета , в том числе и форма . Однако он еще долго не может выделить и обобщить тот или иной признак, в том числе и форму разных предметов .

Сенсорное восприятие формы предмета должно быть направлено не только на то, чтобы видеть , узнавать формы , наряду с другими его признаками, но уметь, абстрагируя форму от вещи , видеть ее и в других вещах . Такому восприятию формы предметов и ее обобщению и способствует знание детьми эталонов - геометрических фигур . Поэтому задачей сенсорного развития является формирование у ребенка умений узнавать в соответствии с эталоном (той или иной геометрической фигурой ) форму разных предметов .

Экспериментальные данные Л. А. Венгера показали, что возможностью различать геометрические фигуры обладают дети 3-4 месяцев. Сосредоточение взгляда на новой фигуре - свидетельство этому.

Уже на втором году жизни дети свободно выбирают фигуру по образцу из таких пар : квадрат и полукруг, прямоугольник и треугольник. Но различать прямоугольник и квадрат, квадрат и треугольник дети могут лишь после 2,5 лет. Отбор же по образцу фигур более сложной формы доступен примерно на рубеже 4-5 лет, а воспроизведение сложной фигуры осуществляют дети пятого и шестого года жизни.

Под обучающим воздействием взрослых восприятие геометрических фигур постепенно перестраивается. Геометрические фигуры начинают восприниматься детьми как эталоны , с помощью которых познание структуры предмета , его формы и размера осуществляется не только в процессе восприятия той или иной формы зрением , но и путем активного осязания, ощупывания ее под контролем зрения и обозначения словом.

Совместная работа всех анализаторов способствует более точному восприятию формы предметов . Чтобы лучше познать предмет , дети стремятся коснуться его рукой, взять в руки, повернуть; причем рассматривание и ощупывание различны в зависимости от формы и конструкции познаваемого объекта. Поэтому основную роль в восприятии предмета и определении его формы имеет обследование , осуществляемое одновременно зрительным и двигательно-осязательным анализаторами с последующим обозначением словом. Однако у дошкольников наблюдается весьма низкий уровень обследования формы предметов ; чаще всего они ограничиваются беглым зрительным восприятием и поэтому не различают близкие по сходству фигуры (овал и круг, прямоугольник и квадрат, разные треугольники) .

В перцептивной деятельности детей осязательно-двигательные и зрительные приемы постепенно становятся основным способом рас-познавания формы . Обследование фигур не только обеспечивает целостное их восприятие , но и позволяет ощутить их особенности (характер, направления линий и их сочетания, образующиеся углы и вершины, ребенок учится чувственно выделять в любой фигуре образ в целом и его части. Это дает возможность в дальнейшем сосредоточить внимание ребенка на осмысленном анализе фигуры , сознательно выделяя в ней структурные элементы (стороны, углы, вершины) . Дети уже осознанно начинают понимать и такие свойства, как устойчивость, неустойчивость и др., понимать, как образуются вершины, углы и т. д. Сопоставляя объемные и плоские фигуры , дети находят уже общность между ними («У куба есть квадраты» , «У бруса - прямоугольники, у цилиндра - круги» и т. д.).

Сравнение фигуры с формой того или иного предмета помогает детям понять, что с геометрическими фигурами можно сравнивать разные предметы или их части . Так, постепенно геометрическая фигура становится эталоном определения формы предметов .

3. Особенности обследования и этапы обучения обследованию детьми дошкольного возраста формы предметов и геометрических фигур

Известно, что в основе познания всегда лежит сенсорное обследование, опосредованное мышлением и речью. В исследованиях Л. Венгера с детьми 2-3 лет индикатором зрительного различения формы предметов служили предметные действия ребенка .

По исследованиям С. Якобсон, В. Зинченко, А. Рузской дети 2-4 лет лучше узнавали предметы по форме , когда предлагалось сначала ощупать предмет , а потом найти такой же. Более низкие результаты наблюдались тогда, когда предмет воспринимался зрительно .

Исследования Т. Гиневской раскрывают особенности движений рук при обследовании предметов по форме . Детям завязывали глаза и предлагали ознакомиться с предметом путем осязания .

В 3-4 года – движения исполнительные (катают, стучат, возят) . Движения немногочисленны, внутри фигуры , иногда (однократно) по осевой линии, много ошибочных ответов, смешение разных фигур . В 4-5 лет – движения установочные (зажимают в руке) . Количество движений увеличивается в два раза; судя по траектории, ориентированы на размер и площадь; крупные, размашистые, обнаруживаются группы близко расположенных фиксаций, относящихся к наиболее характерным признакам фигуры ; дают более высокие результаты. В 5-6лет – движения обследовательские (прослеживание контура, проверка на упругость) . Появляются движения, прослеживающие контур, однако они охватывают наиболее характерную часть контура, другие части оказываются необследованными; движения внутри контура, количество то же, высокие результаты; как и в предыдущий период , наблюдается смешение близких фигур . В 6-7 лет – движения по контуру, пересечение поля фигуры , причем движения сосредотачиваются на наиболее информативных признаках , наблюдаются отличные результаты не только при узнавании, но и при воспроизведении .

Таким образом, для того, чтобы ребенок выделил существенные признаки геометрических фигур , необходимо их зрительное и двигательное обследование. Движения рук организовывают движения глаз и этому детей необходимо научить.

Этапы обучения обследованию

Задача первого этапа обучения детей 3-4 лет - это сенсорное восприятие формы предметов и геометрических фигур .

Второй этап обучения детей 5-6 лет должен быть посвящен формированию системных знаний о геометрических фигурах и развитию у них начальных приемов и способов «геометрического мышления » .

«Геометрическое мышление » вполне возможно развить еще в дошкольном возрасте. В развитии «геометрических знаний » у детей прослеживается несколько различных уровней.

Первый уровень характеризуется тем, что фигура воспринимается детьми как целое , ребенок еще не умеет выделять в ней отдельные элементы, не замечает сходства и различия между фигурами , каждую из них воспринимает обособленно .

На втором уровне ребенок уже выделяет элементы в фигуре и устанавливает отношения как между ними, так и между отдельными фигурами , однако еще не осознает общности между фигурами .

На третьем уровне ребенок в состоянии устанавливать связи между свойствами и структурой фигур , связи между самими свойствами. Переход от одного уровня к другому не является самопроизвольным, идущим параллельно биологическому развитию человека и зависящим от возраста. Он протекает под влиянием целенаправленного обучения, которое содействует ускорению перехода к более высокому уровню. Отсутствие же обучения тормозит развитие. Обучение поэтому следует организовывать так, чтобы в связи с усвоением знаний о геометрических фигурах у детей развивалось и элементарное геометрическое мышление .

Познание геометрических фигур , их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов , что положительно отражается на их продуктивной деятельности (например, рисовании, лепке) .

Большое значение в развитии геометрического мышления и про-странственных представлений имеют действия по преобразованию фигур (из двух треугольников составить квадрат или из пяти палочек сложить два треугольника).

Все эти разновидности упражнений развивают пространственные представления и начала геометрического мышления детей , формируют у них умения наблюдать, анализировать, обобщать, выделять главное, существенное и одновременно с этим воспитывают такие качества личности, как целенаправленность, настойчивость.

Итак, в дошкольном возрасте происходит овладение перцептивной и интеллектуальной систематизацией форм геометрических фигур . Перцептивная деятельность в познании фигур опережает развитие интеллектуальной систематизации.

Библиографический список

1. Белошистая А. В. Знакомство с геометрическими понятиями / А . Белошистая // Дошкольное воспитание . - 2008. - № 9. - с. 41- 51

2. Венгер Л. А. Воспитание сенсорной культуры ребенка / Л. А. Венгер Э. Г. Пилюгина, Н. Б. Венгер. - М.: Просвещение, 1988.- 144с.

3. Воспитание и обучение детей пятого года жизни : книга для воспитателя детского сада / (А. Н. Давидчук, Т. И. Осокина, Л. А. Парамонова и др.) ; под ред. В. В. Холмовской. - М.: Просвещение, 1986. - 144 с.

4. Габова М. А. Знакомство детей с геометрическими фигурами / М . А. Габова // Дошкольное воспитание . - 2002. - № 9. - с. 2- 17.

5. Дидактические игры и упражнения по сенсорному воспитанию дошкольников : (пособие для воспитателя детского сада / под ред. Л. А. Венгера). - М.: Просвещение, 1978. - 203 с.

6. Кербс Е. В. Математические досуги / Е. В. Кербс // Ребёнок в детском саду. - 2008. - № 3. - с. 21- 23.

7. Математика в детском саду : (пособие для воспитателя дет . сада / составитель Г. М. Лямина). - М.: Просвещение, 1977. - С. 224 - 228.

8. Метлина Л. С. Математика в детском саду : (пособие для воспитателя дет . сада) / Л. С. Метлина. - М.: Просвещение, 1994. - 256 с.